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ABSTRACT

A numerical simulation method for the unsteady, incom-
pressible, Navier-Stokes equations applied to viscous free-surface
flows has been developed and tested on three-dimensional (3D)
and two-dimensional (2D) nonlinear, finite-amplitude standing
waves in a rectangular domain. Results are presented for a 3D
simulation of two monochromatic waves that are initially su-
perposed at a 90 degree angle. A comparison of 3D simulation
results with 2D results provides a basis for analyzing nonlinear
wave-wave interaction effects. Viscous damping effects are com-
pared with theory, and wave-wave interactions are analyzed by
decomposing into separate nonlinear effects.

NOMENCLATURE
a  wave amplitude
d  depth

dl, d2  diagonal symmetry planes
e;;  rate-of-strain tensor
g  gravity
h  wave height
wave number

n;  unit normal vector
p  pressure
t;  unit tangent vector
t time
T  theoretical wave period
w  vertical velocity
A (or delta) a portion of surface deformation at-
tributable to nonlinear wave-wave interaction
n  (or eta) surface deformation from quiescent level
v kinematic viscosity
w  wave frequency

INTRODUCTION

This is the second conference paper documenting the de-
velopment of a numerical simulation code for viscous, nonlinear
free-surface problems. The first paper, Hodges et al. (1994), pro-
vides a literature review, detailed explanation of the numerical
method, and validation of the method for two-dimensional (2D)
nonlinear surface waves. This paper demonstrates the ability
of the method to simulate a three-dimensional (3D) free-surface
problem with viscous and nonlinear effects.

NUMERICAL METHOD

Our approach has been to work with second-order accurate
numerical schemes that can be implemented efficiently on a sin-
gle processor of a vector machine. The foundation of our method
is a non-staggered grid, finite-volume method in boundary-fitted
curvilinear coordinates developed by Zang et al. (1994), which
traces its lineage to the time-splitting method of Kim and Moin
(1985). The numerical method solves the unsteady, incom-
pressible, Navier-Stokes equations on a three-dimensional do-
main where the coordinates and equations in physical space are
mapped into a cube in computational space. The equations in
computational space are more complex, but their discretization
is simplified. As the free surface moves with each time step, a
new mapping is calculated so that the free surface remains coinci-
dent with a boundary in computational space. The free surface
is advanced using a curvilinear space formulation of the kine-
matic boundary condition that does not require the wave to be
single-valued in physical space (Hodges et al. 1994). Currently,
limitations of computational memory, computational time, and
the unsolved problems associated with wave-breaking prevent us
from simulating multi-valued waves. Discretization of the kine-
matic boundary condition is through the space-implicit, time-
explicit method of Chan and Street (1970). The free-surface
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dynamic boundary conditions for this simulation are: (1) the
zero tangential stress condition:

eijting = 0 (1)

where e;; is the rate of strain tensor and t; and n; are the unit
tangent and unit normal vectors, respectively; and (2) constant
surface pressure (p):

p=20 (2)

It is planned that future simulations will include both the surface
tension and surface-normal viscous effects that are neglected in
equation (2).

Further details of our numerical method and two-
dimensional validation simulations can be found in Hodges et
al. (1994). Complete details of the three-dimensional method
are to appear in Hodges (1996).

SIMULATION SET-UP

The problem solved is liquid sloshing in a square tank. The
initial free surface position is computed from two identical stand-
ing waves that are linearly superposed at a 90 degree angle. Each
individual wave is monochromatic, nonlinear, and of finite am-
plitude (using a second-order approximation from Wiegel, 1964).
This provides the initial free surface shape shown in Figure (1).
The simulation grid contains 32 x 32 x 32 grid cells (for clar-
ity, only one-quarter of the grid cells on the surface are shown).
In all figures in this paper, the horizontal coordinates are non-
dimensionalized by the lowest mode wavelength, while the sur-
face deformation (n or eta, measured from still free-surface level)
is non-dimensionalized by the combined amplitudes of the two
superposed waves.

eta/amplitude

0
wave surface at t/T =0.0

Figure 1: Superposition of two 2D waves
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The simulation domain is one-half of a wavelength in length
and breadth and one-tenth of a wavelength in depth (50 cm x
50ecm x 10cem). The depth of the simulation was chosen in
conjunction with the viscosity of the fluid (7.32 x 107°m?/s)
so that the free-surface boundary layer could be resolved using
five grid cells without requiring excessive computational time or
memory. While the viscosity is still significantly larger than that
of water, it is approximately one-fifth of that used in the recent
linearized free-surface simulations of Borue et al. (1995).

The initial velocity field is the irrotational solution at the
maximum displacement of a standing wave (i.e. zero for all
velocity components). At the start of the simulation, the upper
surface is set free and is allowed to evolve in response to the non-
linear kinematic and dynamic boundary conditions as applied to
the Navier-Stokes equations. Each of the superposed waves has
the following initial characteristics: the wave number (k) is 6.28
1/m, the wave Reynolds number (w/v k?) is approximately 2000,
the wave ak is 0.0314, the wavelength is 100 ¢m, and the indi-
vidual component wave amplitude is 0.5 cm. The frequency (w)
of the component waves is 5.86 rad/sec, as computed from the
dispersion relation (Wiegel, 1964):

w? = gktanh (kd) (3)

where g is gravity, d is the depth, and k is the wave number.

The combination of the two waves has a sloshing amplitude
of 1.0 cm along a diagonal axis of 70.7 cm. Since the initial con-
ditions are a linear superposition of the two waves, we expect
that the primary oscillation of the system should be at the same
frequency as the individual waves until the nonlinear interac-
tions have had enough time to act upon the system. However,
we should see some nonlinear effects occurring at wavelengths
equal to the diagonal axis and twice the diagonal axis. These
dimensions have wave k values of 8.89 1/m and 4.44 1/m, re-
spectively. The system ak based on the diagonal sloshing is 0.04.
From the dispersion relation, we might expect nonlinear effects
occurring at frequencies of 7.87 and 4.26 rad/sec, corresponding
to the two primary diagonal modes.

The sidewall and bottom boundary conditions are free-slip
(no boundary layer). This is appropriate for this simulation
since the presence of sidewall boundary layers would obscure the
free-surface viscous effects which we seek to capture.

SIMULATION RESULTS

The simulation was carried out for approximately twelve
wave periods (4700 time steps). For analysis, we ran an addi-
tional simulation of viscous 2D sloshing of one of the monochro-
matic component waves. Both the 3D and the 2D simulations
oscillated with a primary period equal to the theoretical period
(for a 2D finite-amplitude standing wave) with an uncertainty of
0.25%. The uncertainty was not surprising since the wave period
was not evenly divisible by the simulation time step. There was
no perceptible increase or decrease of the period over the course
of the simulation, so we can conclude that the duration of the
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simulation was insufficient for nonlinear interactions to have any
significant effect on the overall period of the sloshing. This is a
reasonable result. The waves are in linear superposition to the
first order, therefore it should require a relatively large number
of wave periods for the higher-order nonlinear terms to have a
large-scale effect on the dispersion relation.

The effect of wave-wave interactions on the surface defor-
mation (A) in the 3D simulation is defined by subtracting the
wave surface (n2p) formed from a 90 degree superposition of two
of the 2D monochromatic simulations from the wave surface of
the 3D (nsp) simulation:

A[totul] = Nsp — Tep (4)

Since the simulation of the 2D component wave is also nonlin-
ear, this approach removes the nonlinear interactions of each
wave with itself, leaving only the interactions between the two
waves. Figure (2) shows a plot of the difference between the
3D wave and the superposition of the 2D waves after nine pe-
riods have been simulated. This is the total nonlinear effect
of wave-wave interactions on the surface deformation (which we
will call the “surface deformation effect”). For this point in time
(t/T = 9.015), the surface wave shape is essentially the same
as shown in Figure (1). In Figure (2), the overall surface de-
formation effect of the nonlinear interactions is less than 4% of
the wave amplitude in either direction. Over the duration of the
simulation, the maximum difference between the superposed 2D
waves and the 3D simulation was about 7% of the wave ampli-
tude. However, at the end of the simulation, the nonlinear effects
on the surface deformation were still increasing and would likely
continue to increase for some time as resonant modes for the
domain are excited (for a discussion of gravity wave resonance,
see Phillips, 1974). If the simulation were continued, we expect
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Figure 2: Total surface deformation (3D - superposed 2D)
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Figure 3: Symmetry/asymmetry planes

the nonlinear effects to eventually reach a zero growth rate or a
stable oscillation as energy is exchanged between resonant wave
modes.

To provide a better quantitative understanding and analysis
of the nonlinear wave-wave interactions, we can decompose the
total nonlinear effects (Figure 2) using symmetries and asymme-
tries around four cutting planes illustrated in Figure (3). These
planes can be identified by the following axes:

dl  the main diagonal axis along which the overall sloshing
is approximately symmetrical

d2  the secondary diagonal axis along which the overall
sloshing is asymmetrical

an axis where x/wavelength = 0.25

an axis where y/wavelength = 0.25

The asymmetrical component of the surface deformation
(A1) at a point (p) about a cutting plane (c1) is defined as:

a:c J— ]‘ c
bl = 2 (- o) 5)

where 7, is the surface deformation at point p, and 771[”] is the
surface deformation of the image point of p relative to the cutting
plane ¢;. The symmetrical component of the surface deformation
(APF]) is defined as:

s:c J— ]‘ c
Ape) = 3 (n + o) ©)

It follows that AP 4 AB<1] = p  If we substitute AL*!]
[s:c1)

for n, and the image point of A,
cutting plane (c2) for nl[”], then equations (5) and (6) become:

[a:ea] [e2]

(ALs:cl]) _ %{A;s:cl] _ (AI[Js,cl]) , } (7)
p 1
[s:e2] [e2]

(ALs:cl]) %{A;s:cl] + (AI[Js,cl]) . } (8)
p 1

Using further recursions of equations (7) and (8) about each of
the cutting planes decomposes the surface into sixteen compo-
nents. The sum of the sixteen components is equal to the original

with respect to a second
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surface deformation. Fortunately, it turns out that only seven of
the components are of any significance (with deformations larger
than 0.1% of the wave amplitude). By recombining some of the
seven significant components, five decomposed nonlinear effects
can be defined:

1. Symmetry along both diagonal planes (d1 and d2) with
asymmetry on the z and y planes (Figure 4).

Symmetry on only one diagonal plane (Figures 6 and 7).
Symmetry on all planes (Figure 9).

Symmetry on = and y planes, with asymmetry on both
diagonal planes (Figure 10).

The first of these components (Figure 4) can be seen as
two standing waves (one along each diagonal) with wavelengths
equal to the the diagonal dimension of the domain. We will call
this the “vertical velocity nonlinear effect” for reasons that will
be apparent in due course. The second two effects (Figures 6
and 7) are diagonal sloshings with the longest wavelength equal
to twice the diagonal dimension of the domain. The third and
fourth effects are higher mode waves in the z and y directions
that have wavelengths equal to the domain length. In the case
of Figure (9), the higher mode waves are in phase so that their
crests and troughs coincide in the center. In Figure (10), the
higher mode waves are out of phase in the center of the domain.

To understand the development of the nonlinear effects, it is
useful to examine a time history of the root-mean-square (RMS)
of the deformation components. Figures (5), (8), and (11) pro-
vide this data for the various nonlinear terms. Note that the
RMS graphs show two peaks for each period of a deformation
component. However, in the case of the vertical velocity effect
(Figure 5), the second peak is so small as to be almost non-
existent.
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Figure 4: Symmetry across both diagonal planes
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ANALYSIS

Vertical velocity nonlinear effect

Figures (4) and (5) provide the data for the “vertical ve-
locity nonlinear effect.” This component of the nonlinear effects
has five major characteristics:

1. Unlike the other nonlinear effects, the oscillations of the
vertical velocity effect are not symmetrical about the still
free-surface level (the plane delta = 0 in Figure 4). In
Figure (5), we see evidence of this in the large RMS peak
followed by a very small (almost non-existent) peak. Figure
(4) shows the shape of the vertical velocity effect at the top
of a large peak. At the top of a small peak, the deformation
effect is nearly flat, but is non-zero.

2. The effect shows no significant growth rate. This is consis-
tent with the attribution of the effect to the vertical velocity.
We would not expect to see large changes in the vertical ve-
locity terms since such changes would require either rapid
growth or rapid damping of the waves.

3. The frequency of the effect is approximately 1.25 times the
frequency of the 2D wave, or about 7.33rad/sec. This
is in reasonable agreement with the theoretical value of
7.87rad/sec for a standing wave with a wavelength of the
domain diagonal (which appears to be the longest wave-
length in Figure 4).

4. This is initially the dominant nonlinear effect, but in the
sixth period of the 3D wave combination, it is superseded by
the nonlinear sloshing effects along the main diagonal (d1).
By the eleventh period, the nonlinear sloshing effects along
the minor diagonal (d2) are also larger than the vertical
velocity effect (see Figure 8 for the sloshing effects).

5. In general, this effect shows a decrease in 3D free-surface
height (relative to the combination of the 2D waves) at the
corners of the main sloshing diagonal (d1) and an increase
in height along the minor diagonal (d2) corners.

This phenomena is attributable to the Navier-Stokes’ ver-
tical velocity nonlinear term (w dw/dz, where w is the vertical
velocity and z is the vertical coordinate). The nonlinear vertical
velocity term is included in the superposed component waves,
but its 3D effect is different from the sum of the effects of the
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Figure 5: Vertical velocity surface deformation effects
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2D component waves, since:

ow Ows
- * e

0
(w1 + w2) &(wl + w2) # wi

where the subscripts 1 and 2 indicate the monochromatic waves
in the x and y directions, respectively. We note that if wi = w2
then the nonlinear term on the left-hand side of equation (5) is
twice as big as the nonlinear term on the right-hand side. Thus,
if the velocity field is linearly superposed to the first order, then
the vertical velocity nonlinear terms at the d1 corners of the 3D
simulation will be approximately twice that of the superposed
waves (or four times that of a single wave). For example, in
the first half-period of the sloshing, along the vertical line at
the corner (0,0,z) we have w < 0 and dw/dz < 0, while at
the corner where (0.5,0.5, z) we have w > 0 and dw/dz > 0.
It follows that in the Navier-Stokes equations, along the line
of (0,0, z), the nonlinear term is accelerating the free surface
downward; while along the line of (0.5, 0.5, z), the nonlinear term
is retarding the upward motion of the free surface. This is exactly
the effect illustrated in Figure (4). Note that in the corners of the
d2 diagonal the w; and w2 terms are approximately equal and
in opposite directions. Therefore, effect of the nonlinear term in
the 3D simulation is close to zero, whereas the nonlinear terms
in a superposition of the 2D simulations are of the same sign and
will accumulate rather than cancel. Thus, the 3D simulation has
less damping in the corners of the d2 diagonal than there is in the
2D nonlinear waves, resulting in the surface deformation effect
being positive at these corners. Again, this is clearly shown in
Figure (4).

Diagonal sloshing

Sloshing effects along the main (d1) and minor (d2) diag-
onals are illustrated in Figures (6), (7), and (8). The sloshing
along the main diagonal exhibits the most rapid growth rate of
any of the nonlinear effects. The frequency of the diagonal slosh-
ings is approximately 0.94 times the frequency of the 2D wave,
or about 5.5rad/sec. While this is significantly greater than
the theoretical value of 4.26 rad/sec for a wavelength of twice
the domain diagonal, it is qualitatively correct in that it shows
a lower frequency than the 2D wave. Much as the primary 3D
sloshing is composed of two 2D waves, each of the 3D nonlinear
diagonal sloshing effects could be further decomposed into 2D
waves in the z and y directions. Heuristically, one might expect
the decomposed waves to follow the dispersion relation and os-
cillate at the same rate as the main sloshing. Therefore, it is
significant that these components are oscillating at a slower rate
than the primary sloshing. This indicates that the nonlinear ef-
fects are moving the system away from a superposition of two z
and y waves, transforming it into a combination of waves along
the d1 and d2 axes. Such waves have a longer primary wave-
length and a lower frequency. It is obvious from Figure (8) that
the nonlinear diagonal sloshing effects were still in a period of
rapid change when the simulation was stopped. It is likely that a
longer simulation would show a further decrease of the frequency
and continued growth of the diagonal nonlinear terms.
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Higher order modes

Surface deformations produced at higher modes in the z
and y directions are illustrated in Figures (9) (10) and (11).
These nonlinear effects are an order of magnitude smaller than
the other effects and do not seem to have a significant growth
rate. For all practical purposes, they play a very minor role in
the wave interactions. It is interesting to note that Figure (11)
shows the existence of several similar waves that are slightly out
of phase so as to produce standing wave groups in the higher
modes. This is probably due to reflection effects from the free-
slip boundaries of the simulation.

Viscous effects

To analyze the viscous effects, we compare the maximum
crest-to-trough wave height (as a function of time) to the viscous-
damping theory of Lamb (1945), art. 348-349:

h(t) = h(0)e %" (10)

where h (t) is the wave height as a function of time. Figure (12)
shows the results for the 2D monochromatic sloshing, the 3D
sloshing, and Lamb’s theory. For purposes of comparison, the
theory is shown for the k£ of the 2D superposed waves, as well as
for the k for diagonal waves based upon the diagonal length and
twice the diagonal length.

As shown in Figure (12), the 2D results are in excellent
agreement with the theory, while 3D results and theory are in
reasonable agreement, given that we are taking some liberties in
applying the theory to the 3D case. Lamb’s derivation is based
on an energy argument for a steady, linear, 2D monochromatic
wave which is characterized by a single wave number, while we
are applying it to a nonlinear 3D case that has at least three
significant wave numbers with effects that are time-dependent.
Despite this, our results are fairly consistent with Lamb’s the-
ory. However, we should be careful not to attribute the entire
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Figure 12: Change in maximum crest-to-trough height
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change in the maximum wave height in the 3D simulation to
viscous attenuation. A heuristic argument can be made that the
individual deformation components should follow the damping
theory and, therefore, the total damping should be the sum of
the damping of the components. A brief review of the mag-
nitudes of the nonlinear terms in Figures (5) and (8) and the
difference in wave height between the 3D simulation and theory
in Figure (12) shows that application of equation (10) to the
nonlinear terms cannot account for all of the reduction in wave
height. A better explanation is that a significant portion of the
change in the wave height is caused by the nonlinear terms re-
distributing the wave energy away from the crests and troughs.
For example, from Figure (7), the nonlinear sloshing effect along
the minor diagonal (d2) has an amplitude of 3% of the combined
wave amplitude. This alone could account for most of the dif-
ference between the damping theory and the 3D change in wave
height.

CONCLUSION

This paper has demonstrated the ability of the numerical
method to capture viscous and nonlinear effects in a 3D free-
surface Navier-Stokes wave simulation. Comparisons have been
made to the viscous damping theory of Lamb (1945) with rea-
sonable agreement. The nonlinear wave-wave interactions have
been decomposed into component effects that deform the 2D
monochromatic waves of the initial conditions. Unfortunately,
we have not found any laboratory experiments in the literature
which would provide a suitable basis for direct validation of the
3D wave-wave interactions. This would perhaps be an interest-
ing task that could provide a standard validation method for
free-surface simulations, much as laboratory measurements of
the lid-driven cavity flow have provided for turbulent flow simu-
lations. We hope to provide further validation of the numerical
method at a later date through simulations of progressive water
waves and comparisons to laboratory data.
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